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This paper uses antiresonant frequencies in the "nite element model updating of an
experimental 6-m aluminum truss and analyzes the physical correctness of the updated
model by using it to detect damage. Rigid elements are used to simplify the modelling of
welded joints, and their dimensions are used as parameters in an iterative update based on
eigenvalue and antiresonance sensitivities. An update using both natural frequencies and
antiresonant frequencies is shown to produce a 48% better correlation to experimental
frequency response functions (FRFs) than an update that uses only natural frequencies. The
antiresonant updated model is used to predict FRFs for the truss in 112 damaged
con"gurations. Pattern classi"cation and curve-"t algorithms for damage detection are
tested. The curve-"t method correctly identi"ed damage 92)6% of the time compared to
76)1% for the pattern classi"er. The high quality of the model is attributed to the use of rigid
elements that are updated using antiresonant frequencies.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

After compiling a comprehensive literature survey and authoring a textbook on "nite
element (FE) model updating, Friswell and Mottershead concluded that the current state of
the art in FE model updating involves using natural frequencies and possibly mode shape
sensitivities [1]. However, the use of mode shape sensitivities entails three major di$culties.
(1) Measured mode shapes are usually accurate to within 10% at best [1]. (2) Measured
mode shapes must either be expanded to the number of degrees of freedom (d.o.f.) in the FE
model (using the not-yet-updated FE model) or the FE model must be reduced to the
number of measured d.o.f., both of which increase error in either the mode shape data or the
FE model. (3) The calculation of mode shape sensitivities is di$cult compared to natural
frequency sensitivities [2]. Mode shapes are often used despite these problems, because the
ability of model updating to converge on unique parameters is largely dependent on the
amount of measured data available [3].

In 1999, Mottershead concluded that using antiresonant frequencies in model updating
can be a preferred alternative to using mode shape data [4]. The motivation for using
antiresonant frequencies in updating is that, unlike mode shapes, they are easily and
accurately measured. Mottershead also showed that antiresonance sensitivities can be
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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expressed as a linear combination of eigenvalue and mode shape sensitivities. Therefore,
antiresonant frequencies do not o!er the model updating process any new independent
information over the natural frequencies and mode shapes commonly used in model
updating. However, measured antiresonant frequencies can serve as a more accurate
replacement for measured mode shape data.

Lallement and Cogan [5] and Rade et al. [3] have applied antiresonant frequency data to
FEmodel updating and shown its potential bene"ts. Rade et al. demonstrated their method
with a numerical example of a free}free uniform beam. To the authors' knowledge,
antiresonant frequency data have not been applied to the model updating of an
experimental structure in the published literature. The goal of this research was to
demonstrate FE model updating using antiresonant frequencies on an experimental
structure, compare the method to model updating that uses only natural frequencies, and
analyze the physical correctness of the model by using it to detect damage. The ability to
correctly model damaged states of the structure (states which were not involved in the
updating process) was chosen to be an indicator of the physical correctness of the model and
the success of model updating using antiresonant frequencies.

2. EXPERIMENTAL SET-UP

FE model updating using antiresonant frequencies was applied to the modelling of the
Air Force Institute of Technology (AFIT) 6-m #exible truss experiment (FTE). The FTE is
a vertically cantilevered 6-m truss. The assembled truss has a square cross-section of 50 cm.
It has four vertical square cross-section aluminum longerons that run the length of the
frame. The longerons are connected by aluminum square cross-section horizontal battens
which divide the FTE into eight bays. Each bay has four tubular bolt-in Lexan diagonal
members arranged to create a back-to-back &&K'' pattern over the FTE. Figure 1 is
a diagram of the experimental set-up.

Although the FTE is called a truss, its connections are not pinned but bolted and welded.
The FTE diagonals are bolted to vertical plates which are welded to battens and longerons.
These connections are referred to as vertical plate joints and are shown in Figure 2. In
Figure 1. Experimental set-up.



Figure 2. Vertical plate mesh. All nodes rigidly attach to the master node.
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addition, small triangular horizontal plates welded to the longerons and battens are present
in the joints at the top and mid-height of the FTE. These joints are referred to as top-plate
joints and mid-plate joints respectively. Finally, the locations where battens are welded to
longerons, but no diagonals are present, are referred to as regular batten joints.

Two electromagnetic shakers were used at the top of the truss to simultaneously excite
the structure in two orthogonal lateral directions. Pseudo-random white noise was
generated as input to the shakers while eight accelerometers, four at mid-height and four at
the free end, measured the response. The accelerometers were aligned in the same
orientation as the shakers and orthogonal to each other.

3. FINITE ELEMENT MODEL DEVELOPMENT

The Structural Dynamics Toolbox�� (SDT) for MATLAB�� [6] was used to create an
FE model of the FTE. The standard 12-d.o.f. beam element was used to model all members
of the FTE.

The complicated combinations of bolted and welded connections in the FTE joints were
di$cult to accurately model. Previous researchers [7, 8] had di$culty obtaining an
accurate FE model of the FTE even after model updating, due to errors in modelling the
joints. Rigid elements were chosen to model the FTE joints in this research. This method
was chosen based on the successful use of rigid elements to parameterize and update joints
byMottershead et al. [9], Ahmadian et al. [10], and Horton et al. [11]. Rigid elements were
particularly useful, because they did not add d.o.f.s to the model. The "nal model used 248
nodes but only had 192 d.o.f. due to the constraints applied by rigid elements.

The vertical plate joints were modelled using rigid elements as shown in Figure 2. One
rigid element was used to place a lumped mass, representing the heavy solid aluminum end
of the diagonal, in its realistic position. The placement of these diagonal end masses was
critical to accurately model the torsional modes of the FTE. Another rigid element was used
to connect the diagonal beam element to the master node. The variables d

�
, d

�
, d

�
and d

�
in



Figure 3. FRF correlation from initial model: 00, modelled; **, experimental.
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Figure 2 stand for the dimensions of the rigid elements that connect the longeron, lumped
mass, batten and diagonal element. Other joints were modelled similarly with parameters
d
��

, d
��

and d
��

standing for the dimensions of the rigid elements in regular batten,
mid-plate and top-plate joints respectively.

Initial values were chosen for the joint parameters based on the geometry of the joints.
The initial correlation between a modelled and an experimental frequency response
function (FRF) for one of the eight accelerometers is shown in Figure 3. Measured modal
damping was included in the FE model. Clearly, the initial model required updating to
improve its correlation to the experimental FRFs.

4. PENALTY METHOD USING ANTIRESONANT FREQUENCIES

The penalty method was chosen as the update method for this research, because it
accommodated the use of antiresonant frequencies as measured data and the use of rigid
element dimensions as update parameters. The penalty method is a frequently used method
for updating FE models using the sensitivities of modal data. This development of the
penalty method was taken from Friswell andMottershead's text on FEmodel updating [1].
The method is extended here to include antiresonant frequencies as modal data.

The penalty method is based upon a "rst order Taylor-series expansion that relates
the di!erences between experimental and model eigendata (�z) to steps in the update
parameters (��). In this paper, �z is made up of the di!erences between modelled
and experimental eigenvalues (�

�
and �

	
) and antiresonant eigenvalues (�


�
and �


	
),

where antiresonant eigenvalues are the antiresonant frequencies squared (�
"(�

�
)�).

Model antiresonant eigenvalues were found from an eigenanalysis of M
�

and K
�
,

where the subscripts p and q indicate that row p and column q are deleted from M and
K [12].

The scalar penalty function to be minimized is then de"ned as

J"(�z!S��)�W�� (�z!S��)#(�!�
�
)�W�� (�!�

�
), (1)
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where �
�
are the initial update parameter values, W�� is a weighting matrix on the measured

eigendata and W�� is a weighting matrix on the update parameters. The sensitivity matrix
S is de"ned to include both eigenvalue and antiresonant eigenvalue sensitivities:
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The resulting solution for the set of update parameters that minimizes the penalty
function is

��"(S�W��S#W�� )�� (S�W���z!W�� (�!�
�
)). (3)

This equation is iteratively applied, recalculating S at every iteration, until the update
parameters converge.

The eigenvalue sensitivities required in equation (2) can be found by [13]
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where �
�
are the eigenvectors of M and K.

The mass and sti!ness matrices sensitivities can be found by "nite di!erencing [14]:
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The antiresonant eigenvalue sensitivities required in equation (2) can be found by [13]
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where �
�
and �

�
are the left and right eigenvectors of M

�
and K

�
respectively.

The sensitivities of K
�

and M
�

can be obtained by simply deleting row p and column
q from the sensitivities of K and M from equations (5) and (6):
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5. FE MODEL UPDATING OF THE FTE

A program for the FE model updating method described above was created using
MATLAB��. The SDT formed the initial FE model M and K matrices using initial values



TABLE 1

Final parameter values from model updating

Update parameter Initial value Antiresonant update Non-antiresonant update

E
�
(GPa) 70 50 50

I
�
��

(cm�) 0)15 0)09 0)13
d
�
(cm) 5)1 4)8 4)6

d
�
(cm) 2)5 2)2 2)2

d
��

(cm) 1)3 1)1 1)2
d
��

(cm) 6)4 9)1 5)6
d
��

(cm) 6)4 9)1 6)1
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for the update parameters. The SDT subspace iteration eigensolver [6] and the
MATLAB�� function eigs [15] were used to "nd the eigenvalues and antiresonant
eigenvalues respectively. The di!erence between the modelled and experimental modal data
was then calculated. The sensitivities of the modal data were found from equations (4)}(9).
The method then used the sensitivities to determine a step in the update parameters
(equation (3)) that reduced the di!erence between modelled and experimental data. The FE
model was reformed using the new values of the update parameters, and the process
repeated until the Euclidean norm of the parameter step vector �� was less than 0)01.

The choice of update parameters is critical for successful model updating. For the FTE,
the likely source of modelling error was in the joints. Therefore, "ve parameters were chosen
to be the joint rigid element dimensions d

�
, d

�
, d

��
, d

��
, and d

��
. Model updating

produced the best results when two other parameters, the longeron elastic modulus (E
�
) and

the batten bending moment of inertia (I
�
��

), were included as update parameters. The "nal
set of update parameters is shown in Table 1.

Weighting matrices on the measured data and the parameter estimates were used to
re#ect di!erent levels of con"dence in the accuracy of the measurements and the amount of
error in each update parameter. Friswell andMottershead recommend letting the weighting
matricesW�� and W�� be diagonal matrices with their elements equal to the reciprocal of the
corresponding estimated measurement and parameter variances [1]. The standard
deviations of the natural frequencies and antiresonant frequencies were assumed to be 0)5
and 1% of their identi"ed values respectively. The standard deviations of the update
parameters were made 10% of their initial values for E

�
and I

�
��
, 50% for d

�
, d

�
and d

��
,

and 20% for d
��

and d
��

.

6. FE MODEL UPDATING RESULTS

The "rst update was called the antiresonant update, because it used 11 natural
frequencies and 21 antiresonant frequencies from all 8 FRFs. The antiresonant update
converged in "ve iterations taking 19)5 min on a 166 MHz Pentium PC. Updating results
are shown in Table 1.

In order to evaluate the bene"t of using antiresonance data in updating, another update,
called the non-antiresonant update, was accomplished using only the 11 natural frequencies.
Thus, the sensitivity matrix S in equation (2) was reduced from a 32�7 matrix to an 11�7
matrix. The update was initially unstable. The weighting matrix on the initial parameters,
W�� in equation (1), had to be multiplied by 30 to get the update to converge on a set of "nal
values for the update parameters. The instability was explained by the fact that the same



Figure 4. FRF correlation from non-antiresonant updated model: 00, modelled; **, experimental.

Figure 5. FRF correlation from antiresonant updated model: 00, modelled; **, experimental.
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number of unknown parameters was being solved with fewer equations. The update
converged in four iterations and required 5)7 min of computation on a 166 MHz Pentium
PC. The results of the update are shown in Table 1. The "nal non-antiresonant update
parameters changed less from their initial values than in the antiresonant update, which was
expected because W�� was 30 times greater.

Both updates produced joint rigid element dimensions that were reasonable, based upon
the geometry of the actual joints. However, large reductions were made to the parameters
E
�
and I

�
��
in both updates. The reductions in I

�
��
may be due to an error in the assumed

wall thickness of the battens, since actual measurements were not taken due to the closed
welded ends. The reduction in E

�
is consistent with previous researchers [7, 8], and is likely

due to the lack of a perfectly rigid boundary condition at the base of the FTE.
Figures 4 and 5 show an FRF from the antiresonant and non-antiresonant updated joint

models. Measured modal damping was included in the FE model. The antiresonant update



TABLE 2

Cost function values

FE model Cost function value

Initial model 76)17
Non-antiresonant updated model 13)59
Antiresonant updated model 7)03
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forced greater agreement between model and experimental FRFs, especially around the
antiresonant frequencies. The greatly improved antiresonance correlation suggests that the
inclusion of antiresonance data, rather than the di!erent parameter weighting matrices, was
the major reason why the two updates produced di!erent results.

Table 2 compares the initial model, the non-antiresonant updated model, and the
antiresonant updated model to experimental data based on the following cost function:

J"

�
�
�	�

���
�
�	�
�log �He

��
�!log �Hm

��
��

�
, (10)

where H is a matrix whose columns are FRFs, j is the index on the eight sensor d.o.f., i is the
index on the 400 frequency data points, and the subscripts e andm denote experimental and
model data.

Based on Table 2, the antiresonant updated joint model produced a 48% better correl-
ation to the experimental FRFs than the non-antiresonant updated model. Furthermore,
the antiresonant update was numerically more stable than the non-antiresonant update.

7. DAMAGE DETECTION

An updated model may match the experimental data used in updating without matching
other experimental data not used in updating, such as the response at higher frequencies,
other sensor locations, or the responses under di!erent structural con"gurations, boundary
conditions, or loadings [2]. Such an updated model is not physically realistic, and the
updated parameters do not necessarily correct modelling errors. For this research, the
physical correctness of the antiresonant updated model was validated by using the model to
predict the FRFs of damaged con"gurations of the FTE.

For this research, 112 possible damage states and one undamaged state were considered.
The 112 damage states were broken into three categories. The "rst category consisted of 32
100% damaged cases in which one diagonal was removed from the FTE. The second
category consisted of 32 50% damaged cases in which one diagonal had 50% the normal
cross-sectional area. The third category consisted of 48 double damaged cases in which two
diagonals were removed from the same bay.

Experimental FRFs were taken from the two driving point accelerometers at the top of
the FTE. Damage cases were modelled by removing the appropriate elements from the FE
model or replacing them with elements of 50% normal cross-sectional area and recalculated
bending moments of inertia. Modelled driving point FRFs were then solved from the FE
model of the damage cases.

The modelled FRFs for the 112 damage cases were compared to the experimental FRFs
using two damage detection methods*a pattern classi"cation method and a curve-"t
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method. The "rst method, developed by Swenson [8] and called the pattern classi"er
method, applied variability to the modelled FRFs to create training data and condensed the
training data into feature vectors that were plotted in 40-dimensional space. Experimental
FRFs were then taken from the FTE, condensed into experimental feature vectors and
plotted in 40-dimensional space. The method determined the damage case as the &&nearest
region'' to the experimental feature vector.

The second method, developed as part of this research and called the curve-"t method,
took the modelled FRFs and assembled them into a catalog of possible damage cases.
Experimental FRFs were then taken from the FTE. A simple cost function was computed as
the sum of squared error between the experimental FRFs and each modelled FRF in the
catalog of possible damage cases. The damage was identi"ed as the damage case with the
lowest cost function. The cost function used was

J"

���
�
�	�

(log �H11
�
�!log �H11

�
� )�#

���
�
�	�

(log �H22
�
�!log �H22

�
�)� , (11)

where H
��

and H
��

are the two driving point FRFs and i is the index on the frequency data
points.

8. DAMAGE DETECTION RESULTS

The pattern classi"cation and curve-"t methods of damage detection were programmed
using MATLAB��. Both damage detection methods were tested against 11 300 sets of
experimental FRFs (100 for each of the 113 FTE con"gurations).

The curve-"t method correctly identi"ed the damaged members in 92.6% of the tests
compared to 76.1% for the pattern classi"cation method. The breakdown in Table 3 shows
where the errors in damage detection occurred.

The curve-"t method was more accurate in detecting damage than the pattern
classi"cation method. Also, it was observed that the errors made by the curve-"t method
were all con"ned to the 50% damaged members category. Further investigation showed
that the vast majority of 50% damaged cases were misidenti"ed as other 50% damaged
cases or the undamaged case. Therefore, it was concluded that the 50% damaged FRFs
were too similar to each other and to the undamaged FRFs to reliably predict the damaged
member.

The di$culty in accurately identifying slight damage has important implications for the
practicality of "elded damage detection systems. The engineer must ensure that the damage
detection system has the appropriate number and location of sensors collecting enough
information to detect the desired level of damage. In the case of the FTE, the ability to
TABLE 3

Damage detection accuracy (� of cases correctly identi,ed/� of possible cases)

Damage category Curve-"t method Pattern classi"er method

Undamaged 1/1 1/1
50% damaged 16/32 2/32
100% damaged 32/32 31/32
Double damaged 48/48 45/48
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detect slight damage cases could likely be improved by employing a method based on the
shifts in the natural frequencies and antiresonant frequencies from their undamaged values.
Such a method would remove the initial FE model error to "rst order from the damage
detection process [16] and is a recommended area for further research. Utilizing more than
just the two driving point FRFs would also likely improve results.

9. CONCLUSIONS

Finite element model updating using antiresonant frequencies was found to be successful
in producing an accurate model of an experimental structure with complex joints. The
method was also shown to produce an updated model that matched experimental FRFs
48% better than an update that used natural frequencies only. Lastly, the model updating
process was observed to be more numerically stable when antiresonant frequencies were
used with natural frequencies.

The fact that the curve-"t method was 100% successful in identifying all 100% damaged
and double-damaged cases, using only two sensors, validated the physical correctness of the
antiresonant updatedmodel. The high quality of the model was attributed to the use of rigid
elements that were updated using antiresonant frequencies. Furthermore, it was found that
for this research the curve-"t method was a better damage detection method than the
pattern classi"er method based on the fact that it produced more accurate results, required
less computation, and did not require training data.
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